Living with a Volcano in Your Backyard ## An Educator's Guide with Emphasis on Mount Rainier **General Information Publication 19** **U.S. Department of the Interior** **U.S. Geological Survey and the National Park Service** ## Living with a Volcano in Your Backyard ## An Educator's Guide with Emphasis on Mount Rainier Project Coordinators Carolyn Driedger, Anne Doherty, Cheryl Dixon U.S. Geological Survey General Information Publication 19 **U.S. Department of Interior** **U.S. Geological Survey and National Park Service** ## U.S. DEPARTMENT OF INTERIOR Gayle Norton, Secretary ## U.S. GEOLOGICAL SURVEY Patrick Leahy, Acting Director ### NATIONAL PARK SERVICE Fran Mainella, Director U.S Geological Survey, Reston Virginia: 2005 Additional USGS publications can be found at http://infotrek.er.usgs.gov/pubs/ For more information about the USGS and its products; Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement of the U.S. Government. Although this report is in the public domain, it contains copyrighted materials that are noted in the text. Permission to reproduce those items must be secured from the individual copyright owners. Published in the Western Region, Vancouver, Washington Manuscript approved for publication August 2005 #### CONTENTS #### **Credits** Acknowledgments Introduction How to Use the Guide #### The Three Chapters Chapter 1: What the Past Tells Us Chapter 2: Today's Discoveries Unlock the Past Chapter 3: Don't be Scared—Be Prepared! #### **Explanation of Activity Format** #### **Recommended Activity Sequencing** Class Schedules #### **Activity Summary** Chapter 1: What the Past Tells Us Blast from the Past Forces Responsible for Cascade Volccanism Chapter 2: Today's Discoveries Unlock the Past Lava, Rock Rubble, and Mud, Oh My! **Interpreting Volcanic History** Chapter 3: Don't be Scared—Be Prepared! Mapping Your Way to Mount Rainier Living with a Volcano in Your Backyard Home and Community Preparedness Plans #### **Key Concepts** Many Volcanoes of the Cascade Range are Historically and Presently Active Diverse and Dynamic Processes Shaped Volcanoes of the Cascade Range Studying a Volcano's Past and Present Behavior Provides Important Clues about Future Eruptions We Can prepare for the Next Eruption of Mount Rainier Mount Rainier is Culturally Significant #### **Education Standards Matrix** #### Commonly-Asked Geology Questions by Visitors to Mount Rainier #### Chapter 1: What the Past Tells Us #### Background—Volcanism in a Plate Tectonic Perspective #### Blast from the Past Activities Eruption! Fire, Flood, and Fury 19th Century News Cascade Volcano Timeline A String of Volcanoes Volcano Hall of Fame #### Forces Responsible for Cascade Volcanism Activities Surrounded by Volcanoes Where is Juan? Magma Mash Riding the Magma Elevator Soda Bottle Volcano #### Chapter 2: Today's Discoveries Unlock the Past #### Background—Volcanic Processes at Mount Rainier #### Lava, Rock Rubble, and Mud, Oh My! Activities Understanding Volcanic Hazards – Video Cutaway Volcano Tephra Popcorn Lava—Building Blocks of Mount Rainier **Rock Stars** Fire and Ice Lahar in a Jar Rock, Rubble, Review #### **Interpreting Volcanic History** Activities Earth Blocks Reading Tephra Layers Alien Tephra at Mount Rainier Shoebox Geologist Luscious Layers Perilous Beauty Video Journey Back in Time: A Story of Mount Rainier #### Chapter 3: Don't be Scared – Be Prepared! Background—Cascade Volcanoes—An invitation to learn, prepare and enjoy #### Mapping Your Way to Mount Rainier Activities Play-dough Topo Topo Scavenger Hunt Planning Your Trip to Mount Rainier #### Living with a Volcano in your Backyard Activities Reducing Volcanic Risk - Video The Next Eruption of Mount Rainier #### Home & Community Preparedness Plans Activities Don't Be Scared—Be Prepared! A Tephra Tussle Live Well with a Volcano in your Backyard—Prepare, Then Enjoy it! #### Glossary **Internet Resource List** **Computer Simulations of Volcanic Processes** #### **CONVERSION FACTORS** #### SI to Inch/Pound For readers who wish to convert measurements from the metric system of units to the inchinch-pound system, the conversion factors are listed below. | Ву | To obtain | |--------|---| | | | | 0.6214 | mile (mi) | | 3.281 | foot (ft) | | | | | 2.471 | acre | | 10.76 | square foot (ft²) | | | | | 0.2399 | cubic mile (mi ³) | | | | | 15.85 | gallon per minute (gal/min) | | | | | 1.102 | short ton (2,000 pounds) | | 0.9842 | long ton (2,240 pounds) | | 27.273 | pound per minute (lb/s) | | | 0.6214
3.281
2.471
10.76
0.2399
15.85
1.102
0.9842 | Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F=(1.8\times^{\circ}C)+32$ #### **CREDITS** #### **Project Coordinators** Carolyn Driedger, Anne Doherty and Cheryl Dixon The National Park Service and US Geological Survey wish to acknowledge the insights, contributions, and dedication of all of the teachers, emergency managers, and scientists who developed and supported this educator's guide. #### **Contributing Agencies** | US Geological Survey | |----------------------------| | National Park Service | | Eatonville School District | | Yelm School District | | Bethel School District | | Tacoma School District | Orting School District Mount Rainier Volcano Hazard Workgroup Washington Emergency Management Division #### **Primary Activity Developers and Writers** | Brit Argow | Cheryl Dixon | |--------------|------------------| | Anne Doherty | Carolyn Driedger | #### **Contributing Activity Developers and Writers** | Jenny Anderson | Chris Maun | |-----------------|----------------| | Lisa Anjozian | Jane Poole | | Julie Benkovich | Mike Roylance | | Mary Henterly | Tom Sisson | | Kathy Johnstone | Marianne Smith | Nina Shields Kim Strassburg Debra Wood Colleen Riley #### **Contributors for Background Sections** Tom Sisson—Chapter 1 and 2 Carolyn Driedger—Chapter 3 #### **Graphics and Design** Lisa Faust (U.S. Geological Survey) #### x Living with a Volcano in Your Backyard—An Educator's Guide #### **Reviewers** #### **Activity Technical Reviewers** Cynthia Gardner Tom Sisson James Vallance Larry Mastin Kevin Scott Jody Woodcock Bobbie Myers Willie Scott Tom Pierson Robert Tilling #### **Educator Reviewers** Jenny AndersonAnnette HeffronRichard MuseBritt ArgowMary HenterlyJane PooleBonnie BeaudoinSteven HodenShirley ReboinJulie BenkovichJeff HouckRichard SchroedelBarry BlochDavid JacobsonMarianne Smith Ellen Bratcovich Kathy Johnstone Ted Stout Penny Davis Laura Kraig Kim Strassburg Dawn Ellis Mathew Kwartin Eric Temple Ken Fidler Jim Lazzarrni Brett Thomsen Olga Haider Chris Maun Debra Wood Rick Haughee Katie Mettler Kristy Worley #### **Editorial Reviews** Jaclyn Richardson LaRue (National Park Service) Robert Tilling (U.S. Geological Survey) Christine Janda (U.S. Geological Survey) #### **Publication Support** U.S. Geological Survey National Park Service Washington Emergency Management Division #### **ACKNOWLEDGMENTS** The Mount Rainier Volcano Hazards Workgroup is a coalition of emergency and landuse managers, educators, public officials, community leaders, and scientists dedicated to mitigating the effects of volcanic activity at Mount Rainier. Since 1996, the workgroup has met regularly to plan responses to future volcanic unrest at Mount Rainier. These measures include developing a Volcano Response Plan that defines the role of each contributing agency during volcanic unrest, practicing the plan, training emergency management staff about volcano matters, and supporting development of a lahar detection system and accompanying notification system. Member agencies provide grassroots community outreach regarding volcanic hazards. Their effort encouraged the writing of Living with a Volcano in your Backyard—An Educator's Guide with Emphasis on Mount Rainier. ### Living with a Volcano in Your Backyard— An Educator's Guide with Emphasis on Mount Rainier Project Coordinators: Carolyn Driedger¹, Anne Doherty², and Cheryl Dixon² #### INTRODUCTION Today's residents, as well as residents of centuries past, consider Mount Rainier "the spiritual and cultural icon of the Pacific Northwest." As a backdrop for many of the state's residents, Mount Rainier offers beauty, solace, inspiration, and challenge. The mountain sets the daily mood for thousands of people who gaze at and respect it. There is no mistaking this object of admiration when people smile and remark that, "the mountain is out!" Yet, the origin of Mount Rainier formed by volcanic processes and now heavily laden with snow and ice, remains an enigma to many admirers. During the 1980's, volcanologists from around the world voted Mount Rainier as one of 17 volcanoes most worthy of additional study because of the hazard potential to large population centers nearby. Subsequent research indicates that Mount Rainier, though quiet since the nineteenth century, is very much an "active volcano" with potential to erupt again and disrupt the life of Pacific Northwest residents. Following days to months or more of warning, Mount Rainier could erupt lava and ash and melt snow and ice to form lahars (volcanic mudflows). Or, Mount Rainier could simply warm up briefly, jolt us from our apathy, and then return to slumber for many more years. Until such time, the mountain is ours to explore. Living with a Volcano in Your Backyard—An Educator's Guide with Emphasis on Mount Rainier invites educators to learn what scientists are discovering about Mount Rainier's past; to explore its slopes during this period of quiescence; and to plan future responses to volcano unrest. Mount Rainier National Park is a unique classroom, rich in resources for observing geologic change. The park staff encourages safe and knowledgeable use by educators, and students and their families. To this end, the National Park Service operates a Division of Interpretation and Education designed to aid teachers' use of Park resources within and outside Park boundaries. ¹ U.S. Geological Survey; ² National Park Service #### xiv Living with a Volcano in Your Backyard—An Educator's Guide The National Park Service and the U.S. Geological Survey's Volcano Hazards Program (USGS-VHP) support development and publication of this educator guide as part of their mission to educate the public about volcanoes. The USGS-VHP studies the dynamics of volcanoes, investigates eruption histories, develops hazard assessments, monitors volcanorelated activity, and collaborates with local officials to lower the risk of disruption when volcanoes become restless. The Mount Rainier Volcano Hazard Workgroup, a collaboration of emergency and land-use managers, local officials, educators, community leaders and scientists laid the groundwork for educating the next generation by developing and practicing volcano response and communication plans, and by supporting community outreach. Living with a Volcano in Your Backyard—An Educator's Guide with Emphasis on Mount Rainier is part of the group's long-term outreach plan. It is their hope that Mount Rainier's admirers be prepared as well as inspired. ### Living with a Volcano in Your Backyard— An Educator's Guide with Emphasis on Mount Rainier #### **HOW TO USE THIS GUIDE** Living with a Volcano in Your Backyard—An Educator's Guide with Emphasis on Mount Rainier is a three-unit guide that provides science content and inquiry-based activities about volcanoes of the Cascade Range, with emphasis placed on Mount Rainier. Activities are designed for middle school students. Adaptations and extensions offer opportunities for students in higher and lower grade levels. Background sections provide more in-depth information. This guide includes more than 30 activities, a field guide to geological sites of interest at Mount Rainier National Park, glossary, list of Internet resources, and supplementary information. The principal purpose of this guide is to familiarize students with the geologic and hydrologic processes that shaped Mount Rainier. The authors wish to show how present populations can enjoy the mountain safely and responsibly while recognizing these natural processes as hazards. Materials in the guide enable broad instruction about volcanoes of the Cascade Range, and focused instruction about Mount Rainier volcano. Science content and activities are usable alone or as augmentation for other curricula. #### THE THREE CHAPTERS #### **Chapter 1**—What the Past Tells Us This chapter provides a general overview of volcanoes of the Cascade Range. The chapter begins with a pre-assessment activity entitled "**Eruption!**" and then addresses the plate tectonics responsible for Cascades volcanism. It ends with activities regarding how volcanoes work. #### Chapter 2—Today's Discoveries Unlock the Past Volcanic processes are the principal focus of Chapter 2, and are the natural progression from the Chapter 1 overview about how volcanoes work. Activities invite inquiry about volcanic processes at Cascade volcanoes, and about how researchers conduct their investigations. The chapter ends with "Journey Back in Time: A Story of Mount Rainier," a description of trips to field sites at Mount Rainier. #### **Chapter 3**—*Don't be Scared – Be Prepared!* Chapter 3 contains information about volcanic hazards and suggestions for preparedness. Several activities suggest how students can appreciate the benefits of living near a Cascade volcano, and can enjoy them, most often from their own communities. The teacher should consult 'Recommended Activity Sequencing" to determine the most appropriate activities based on time and teaching goals. #### **EXPLANATION OF ACTIVITY FORMAT** - **Overview:** The overview provides a summary of concepts and general procedures addressed in the activity - **Grade Level:** Authors based grade designation upon the level that best fit Skills and Benchmarks for the activity - Learner Objectives: Students should meet the listed objectives with each activity - **Setting:** Authors chose the most practical location for completion of an activity - **Timeframe:** Authors used classroom reviews to determine timeframe required for completion of each activity - Materials: A list of materials required for completion of each section of the activity - **Skills:** Skills are based upon criteria established for Washington State teaching standards - **Benchmarks:** Benchmarks are based upon standards set by Washington State Essential Learning Requirements and National Standards - **Vocabulary:** First usage of a vocabulary word in an activity is designated in *bold italics*, and is included in the *Glossary* - **Teacher Tips:** Teacher Tips highlight information of added value to the teacher. Tips include specific recommendations regarding the activity - **Teacher Background:** Provides the teacher with the content information required to complete the activity - **Procedures:** Recommends course of action for conducting the activity - Student and Teacher Pages: Aactivity pages designed for student and teacher use #### RECOMMENDED ACTIVITY SEQUENCING #### One week of classes 50-minutes each - Eruption! or Fire, Flood and Fury, or Nineteenth Century News (1 class) - Cascade Volcano Timeline (2 classes) - Where is Juan? (2 classes) #### OR - Eruption! (1 class) - Soda Bottle Volcano (1 class) - Understanding Volcanic Hazards or Volcanic Processes (1 class) - Lahar in a Jar (1 class) - The Next Eruption of Mount Rainier (1 class) #### Two weeks of classes 50-minutes each • Use all of the recommendations above, and add one additional activity from Chapter 2 or 3 #### Three weeks of classes 50-minutes each - Conduct the above two weeks and add the following three activities - o Earth Blocks (1 class) - o Reading Tephra Layers (2 classes) - Shoebox Geologist (2 classes) #### Six weeks of classes 50-minute each - Conduct all of Chapter 1 and Chapter 2 activities in order - Play-dough Topo (1 class) - Topo Scavenger Hunt (1 class) - Plan Your Trip to Mount Rainier, or other Chapter 3 activities (2 classes) #### Schools located in any volcano hazard zone - Eruption! (1 class) - Perilous Beauty video (1 class) - The Next Eruption of Mount Rainier (1 class) - Don't be Scared—Be Prepared (1 class) - A Tephra Tussle (1 class) - Live Well with a Volcano in Your Backyard—Prepare, Then Enjoy It! (1 class) #### Schools in a lahar hazard zone - Lahar in a Jar (1 class) - Understanding Volcanic Hazards video [older students only] (1 class) - Perilous Beauty video (1 class) - Reducing Volcanic Risk video (1 class) - Don't Be Scared—Be Prepared! (1 class) - The Next Eruption in the Cascades (1 class) - A Tephra Tussle (1 class) - Live Well with a Volcano in Your Backyard—Prepare, Then Enjoy It! (1 class) #### Schools in vicinity of volcanoes of the Cascade Range, but not in a hazard zone - All of Chapter One - All of Chapter Two #### Teacher with plans for class fieldtrip to Mount Rainier - Surrounded by Volcanoes (2 classes) - Volcanic Hazards or Understanding Volcanic Hazards video (1 class) - Play-dough Topo (1 class) - Topo Scavenger Hunt (2 classes) - Plan Your Trip to Mount Rainier (1 class) - Journey Back in Time: A Story of Mount Rainier (single or multi-day field trip) #### **Community and school safety** - Perilous Beauty video (1 class) - Reducing Volcanic Risk video (class1) - Don't Be Scared—Be Prepared! (1 class) - Live Well with a Volcano in Your Backyard—Prepare, Then Enjoy It! (1 class) #### **Social studies and English** - Eruption! (1 class) - Fire, Flood and Fury (1 class) - Nineteenth Century News (1 class) Note to teachers downloading files: In addition to downloading activity files, teachers are encouraged to download chapter background sections, Glossary, Computer Simulations of Volcanic Eruptions, and Internet Resources. #### **ACTIVITY SUMMARY** #### Chapter 1—What the Past Tells Us #### **Blast from the Past** - ♦ Eruption! In this pre-assessment activity, students describe their perceptions of a volcanic eruption in a personal journal entry. Then they read an actual eyewitness account of the 79 A.D. eruption of Mount Vesuvius in Italy and compare those events to the eruption events depicted in their journal entries - Fire, Flood, and Fury Native American oral traditions chronicle geologic events in the history of Mount Rainier. These stories are read, interpreted, and illustrated by students with the use of storyboards. - ◆ Nineteenth-Century News Read nineteenth-century newspaper accounts of recent eruptions at Mount Rainier. The minor eruptive activity at Mount Rainier illustrates that not all eruptions are large or destructive. - ◆ Cascade Volcano Timeline Cascade volcanoes are young in relation to the geologic events that have shaped the Earth. A timeline illustrates the high incidence of Cascade volcano activity in comparison to geologic and human events since the signing of the Declaration of Independence. A hypothetical genealogy of one family's history illustrates the collective and individual activity of the Cascade volcanoes. - ♦ A String of Volcanoes Students research information about Cascade volcanoes and write the information on cards used to construct a mobile. - ♦ **Volcano Hall of Fame** This is a game where students use fun facts to try to identify a specific Cascade volcano. #### **Forces Responsible for Cascade Volcanism** - ♦ Surrounded by Volcanoes Explore geographical information to learn about tectonic boundaries, origin of the "Ring of Fire", and volcanoes in the Pacific Northwest. Identify and label Cascade volcanoes on a satellite image. - ♦ Where is Juan? Investigate the origin of volcanoes by making a trip deep into a subduction zone via an activity board and detective note pad. Students learn about the rock cycle by performing the activity. - ♦ Magma Mash Students take on the role of minerals cooling at different rates in an exploration of magma behavior, and then examine samples of rocks cooled at different rates. - ♦ **Riding the Magma Elevator** Examine the process of magma formation from mantle melting in the subduction zone, rising to the magma chamber, and erupting from the magma conduit. During this activity, the class will ride an imaginary elevator from the subduction zone and out the volcano crater. - ♦ **Soda Bottle Volcano** Examine how gases energize explosive volcanic eruptions by making comparisons to gases in a soda bottle and performing a carefully controlled "eruption" of baking soda/vinegar or soda water. #### Chapter 2—Today's Discoveries Unlock the Past #### Lava, Rock Rubble, and Mud, Oh My! - ♦ Understanding Volcanic Hazards A video that introduces students to the vocabulary and character of volcanic processes and how volcano hazards impact people living near and far from a volcano. This video is intended for other students only. - ♦ Volcano Processes A variety of volcanic processes shapes the surrounding landscape. This activity is an alternative to the Understanding Volcanic Hazards video. Students view graphics of volcanic processes, then answer questions on a worksheet. As an optional activity, they can prepare a booklet or computer presentation about each process with an emphasis on the interaction of these processes during a volcanic eruption. - ◆ **Tephra Popcorn** Students study physical characteristics of tephra using samples and make mass and volume measurements of popcorn to understand the role gases play in tephra formation. - ◆ Lava—Building Blocks of Mount Rainier Students explore the nature and motion of lava flows and learn their importance as the building blocks of Mount Rainier. Students learn how the composition and texture of lava differs between volcanoes and affects the ultimate shape of a volcano. - ♦ Rock Stars Using photos and rock samples, students identify the characteristics that tell a story about where and how each rock was formed. - Fire and Ice Students conduct or observe an experiment simulating glacier/lava flow interactions, then answer questions about how glacier and lava interactions shaped specific features on Mount Rainier. - ◆ Lahar in a Jar Using experiment and scientific methods, explore how loose rock is mobilized by small amounts of water to form lahars. - ◆ Rock, Rubble, Review This is a physically active game that tests the students' knowledge of volcano terminology, processes, and impacts on communities. #### **Interpreting Volcanic History** - ♦ Earth Blocks Learn about the "Law of Superposition" and how to interpret rock and sediment layers by reading a short story and arranging "Earth Blocks." - Reading Tephra Layers Students learn three clues to help them determine tephra origins using a diagram, and make their own tephra layers with kitchen ingredients and a fan. - ◆ Alien Tephra at Mount Rainier Students learn that tephra layers at Mount Rainier originated from several volcanoes by looking at tephra dispersal patterns and thickness contours on maps. - ♦ Shoebox Geologist Make a model of layers emplaced by processes of deposition and erosion in a volcanically active landscape. Students interpret geologic events from layers in a classmate's model using stratigraphic columns and the law of superposition. - ◆ Luscious Layers Investigate evolution of a stratovolcano by building an edible model of Mount Rainier using simple kitchen products. - ♦ **Perilous Beauty** The "Perilous Beauty" video introduces students to the types of hazards common to Mount Rainier, specifically mudflows and the types of mechanisms that produce them. - ◆ **Journey Back in Time: A Story of Mount Rainier** Use this field guide as a tool for exploration during visits to Mount Rainier. #### **Chapter 3**—*Don't be Scared – Be Prepared!* #### **Mapping Your Way to Mount Rainier** - ◆ **Plan Your Trip to Mount Rainier** Students will plan a trip to Mount Rainier National Park using topographic, highway, and official Park maps. - ♦ **Play-dough Topo** Students make a clay model volcano, complete with glacial and fluvial valleys, and then create a topographic map of their volcano. - ◆ Mount Rainier Cone Model Students color, cut, fold and paste a simple coneshaped volcano to become familiar with many of Mount Rainier's geographical features. #### Living with a Volcano in Your Backyard - ◆ The Next Eruption at Mount Rainier Examine maps to determine whether you live, work or go to school in an area at risk from volcanic activity; learn about steps taken in your community to reduce the risk from volcanoes. - ♦ Reducing Volcanic Risk Video The video familiarizes students with a volcano risk mitigation method involving identifying hazardous areas, monitoring a volcano for signs of increased activity, and developing emergency plans. #### **Home and Community Preparedness Plans** - ♦ **Don't Be Scared**—**Be Prepared!** Students learn simple steps to preparedness by conducting basic preparedness tasks with their class and family. - ♦ A Tephra Tussle/Debate Students play the role of a visitor or other person with interest in facilities at Mount Rainier National Park. They write position papers and later defend them within a group. - ◆ Live Well with a Volcano in Your Backyard—Prepare, then Enjoy it! Students will learn simple steps to preparedness by performing basic preparedness tasks with their class and family. #### **KEY CONCEPTS** #### Many Volcanoes of the Cascade Range are Historically and Presently Active - ♦ Mount Rainier is one of thousands of volcanoes located in a circum-Pacific zone of volcanism known as the Ring of Fire - ♦ Volcanoes of the Cascade Range erupted recently in geologic time; seven volcanoes have erupted since the signing of the Declaration of Independence in 1776 - ♦ Layers of lava and volcanic ash remain as evidence of a volcano's eruptive history - ♦ People of the Pacific Northwest witnessed volcanic eruptions repeatedly after entering the region approximately 9,000 years ago; people recorded their observations in oral and written stories - Each Cascade volcano possesses a unique history and eruption style - ♦ Plate techtonics processes that produced the Cascade Volcanoes remain unchanged. Future eruptions will occur. #### **Diverse and Dynamic Processes Shaped Volcanoes of the Cascade Range** - ♦ The Cascadia Subduction Zone is the foundation for volcanoes of the Cascade Range - ♦ Water plays a principal role in the development of eruptions; first, it lowers the melting point of mantle rock enough to transform solid rock to magma, and later it expands and propels magma up the conduit causing a volcanic eruption - Water also plays a principal role in destruction of a volcano because it reduces rock stability; stream water and glacial ice erode the volcano; water mobilizes loose volcanic rock and forms debris flows and lahars (volcanic mudflows) - ♦ When Ice-Age glaciers enveloped Mount Rainier, they influenced the movement of lava flows and thus, the location of today's ridges and valleys - ♦ Lava flows and domes, volcanic ash, pyroclastic flows and lahars built the existing landscapes at volcanoes of the Cascade Range - ♦ Mount Rainier consists of overlapping layers of lava flows and rock rubble - ♦ Volcanic ash, tiny fragments of erupted magma, are blown by the wind and distributed thousands of miles distant - ♦ Landslides and lahars have covered valley floors for tens of kilometers (miles) distant from some Cascade volcanoes - ♦ Chemical composition and cooling conditions determine the appearance of volcanic rocks - ♦ The geologic processes that built Cascade volcanoes pose hazards for the future ## Studying a Volcano's Past and Present Behavior Provides Important Clues about Future Eruptions - Geologists examine rock layers at each volcano to determine past eruptive behavior and thus the most likely type of volcanic activity to happen in the future - ♦ Scientists consider Mount Rainier "active" (although it is not currently erupting) because of recurring earthquake activity, the presence of geothermal heat and gas release and the volcano's location in an active tectonic setting - Volcanologists are on continual watch for changes that could indicate the onset of volcanic unrest; they watch for variations in earthquake activity, gas release and slope stability - ♦ Magma, rising in the Earth, causes rock breakage and earthquakes that precede an eruption - ♦ Earthquakes are a reliable tool for volcano forecasting because they occur weeks to months or more in advance of an eruption - ◆ Lahars (volcanic mudflows) are the most significant hazard to people who live in the vicinity of Mount Rainier because they are known to have traveled more than one-hundred kilometers (sixty miles) or more distant - ♦ While most lahars form by snow and ice-melt during an eruption, landslides can also initiate lahars during non-eruptive times with little or no warning #### We Can Prepare for the Next Eruption of Mount Rainier - Mount Rainier has the potential to erupt during our lifetime - ◆ Reviewing Mount Rainier's history can help us identify the lowland communities that could be adversely impacted by the mountain's power - When people understand the risks presented by volcanic eruptions, they can take steps to prevent disasters - Preparing and understanding hazard maps help us prepare for future volcanic activity - Reducing volcano risk requires societal debate, tough choices, and the ability to view issues from a variety of perspectives - ◆ Multiple career opportunities exist in the monitoring, planning and preparation for the next eruption of Mount Rainier - Observing and learning about Mount Rainier will help you be ready for renewed volcanic activity and associated hazards #### **Mount Rainier is Culturally Significant** - ♦ Mount Rainier is a principal cultural icon of the Pacific Northwest - Volcanoes can be community assets, bringing aesthetic and economic benefit - ♦ Interest in volcanoes is nearly universal, and unites people globally as they address volcanic risk - Mount Rainier inspires artistic and cultural traditions - ♦ Mount Rainier offers a fascinating opportunity to learn about volcanoes and local ecology XXV The Educator Standards Matrix is being written and will be posted when completed. | xxvi Living with a Volcano in Your Backyard—An Educator's Guide | | |-------------------------------------------------------------------------------------------------------------------|--| | COMMONLY-ASKED GEOLOGY QUESTIONS BY VISITORS TO MOUNT RAINIER | | | | | | | | | | | | | | | Commonly-Asked Geology Questions by Visitors to Mount Rainier is being written and will be posted when completed. | | | | |